REGIONE SICILIANA

Piano di Azione e Coesione (PAC)

INTERVENTI DI RIQUALIFICAZIONE URBANA

COMUNE DI CATANIA

DIREZIONE CULTURA E TURISMO SERVIZIO LL.PP.

LAVORI DI COMPLETAMENTO, ADEGUAMENTO E ALLESTIMENTO DELL'EX CONVENTO DEI CROCIFERI D.D.G. N. 3237 DEL 24.12.2015

RELAZIONE TECNICA

Calcolo trasmittanza e Verifica termoigrometrica delle pareti presenti nel progetto

UNI EN ISO 13788:2003 - Prestazione igrotermica dei componenti e degli elementi per edilizia Temperatura superficiale interna per evitare l'umidità superficiale critica e condensazione interstiziale - Metodo di calcolo.

Elenco finestre e caratteristiche termiche

salles

UNI EN ISO 10077 - Trasmittanza termica dei componenti finestrati

sallec

DESCRIZIONE PROGETTO: EX CONVENTO DEI CROCIFERI

COMUNE DI: CATANIA PROV. CATANIA

LOCALITÀ: CATANIA

UBICAZIONE EDIFICIO: VIA DEI CROCIFERI

COMMITTENTE/I: COMUNE DI CATANIA

ELENCO DELLE PARETI PRESENTI NEL PROGETTO

Codice	Descrizione	U Adottata	U Calcolata	Incremento %	U Adottata + Incr
PE4	Parete esterna ca	0.452	0.452	0	0.452
Div003	Divisorio Interno 20cm	1.311	1.311	0	1.311
PE130P	Par. c.t. pietra 130	0.467	0.467	0	0.467
PI130P	Par. int. pietra 130	0.870	0.870	0	0.870
PE130	Par. est. 130	0.918	0.918	0	0.918
PE100	Par.est. 100	1.125	1.125	0	1.125
PI90P	Par. int. pietra 90	1.133	1.133	0	1.133
PI70P	Par. int.pietra 70	1.335	1.335	0	1.335
PI50P	Par.int. pietra 50	1.624	1.624	0	1.624
PavIpog	Pavimento sala Ipoge	0.374	0.374	0	0.374
SoIpog	Solaio Sala Ipogea	0.370	0.370	0	0.370
Parvetr	Parete Vetrata	2.424	2.424	0	2.424
VtrM	Par. vtr. pad musica	1.035	1.035	0	1.035
VtrF	Vetro camera	2.547	2.547	0	2.547
PE41	Par est. c.a. mus.	0.443	0.443	0	0.443
PIca	Par Int. c.a.	1.268	1.268	0	1.268
PE1pm	Par. est. 1 p. mus.	0.461	0.461	0	0.461
PAvpm	Pav pad. musica	0.970	0.970	0	0.970
SolPM	Sol. pad. musica	0.089	0.089	0	0.089
LucPM	Luicernaio PM	2.173	2.173	0	2.173
PE90	Par.est. 90	1.216	1.216	0	1.216
PE80	Par. est. 80	1.323	1.323	0	1.323
PE70	Par. est. 70	1.451	1.451	0	1.451
Terr	Terrazza	0.289	0.289	0	0.289
Panr	Pav. Piano1	0.648	0.648	0	0.648
PavInt	Pavim. Interpiano	0.648	0.648	0	0.648
Solint	Solaio interpiano	0.713	0.713	0	0.713
Solns	Solaio Piano 2	0.288	0.288	0	0.288
Po	Porta interna	1.316	1.316	0	1.316

Legenda:

Trasm. U Adottata	Trasmittanza della parete calcolata con la UNI 10379	$[W/m^2 K]$
Trasm. U Calcolata	Trasmittanza della parete considerando l'incremento percentuale di sicurezza	$[W/m^2 K]$
Incremento %	Incremento percentuale di sicurezza della trasmittanza	[%]
Trasm. U Adottata + Incremento	Trasmittanza della parete calcolata con la UNI 7357	$[W/m^2 K]$

CARATTERISTICHE TERMICHE DEI COMPONENTI DELL'INVOLUCRO EDILIZIO

Cod. Struttura: PE4 - Descrizione Struttura: Parete esterna ca

Tipo Struttura : PARETE

Spessore totale: 46.2 [cm]

Classificazione della parete : PARETE Opaco
Colore della parete : Chiaro -

Velocità del vento :4.0[m/s]Trasmittanza U calcolata :0.452 $[W/m^2 K]$ Incremento % di sicurezza :0[%]Trasmittanza U adottata :0.452 $[W/m^2 K]$

Capacità termica areica interna : 15.80 [kJ/m² K]
Capacità termica areica esterna : 122.82 [kJ/m² K]

Fattore di attenuazione \mathbf{fa} : 0.10 Sfasamento $\Delta \mathbf{t_f}$: 12.62 [h]
Trasmittanza termica periodica \mathbf{Yie} : 0.05 [W/m² K]

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	318	Pannello di cartongesso	2.00	0.600	0	750	0.03	0.84	8	15.00
2	376	Velo di vetro bitumato	0.20	0.230	0	1200	0.01	0.92	20000	2.40
3	401	Aria in quiete T = 293 K	4.00	0.026	0	1	1.54	1.00	1	0.04
4	83	Parete esterna cls armato	40.00	0.800	0	1600	0.50	0.88	20	640.00

	CONDIZIONI AL CONTORNO DELLA STRUTTURA										
	Tinterna [°C]	U. R. interna [%]	Testerna [°C]	U. R. esterna [%]							
Invernale	20.0	65.0	10.7	85.9							

Verifica Termo-Igrometrica

Mese	Temp.int.	Um.Rel.int	Temp.est.	Um.Rel.est	Pi	Pe	Temp.min.	FRSI	Gc	Ma
	[°C]	[%]	[°C]	[%]	[Pa]	[Pa]	[°C]		[kg/m ²]	[kg/m ²]
Gennaio	20.00	65	10.70	86	1519	900	8.71	0	0	0
Febbraio	20.00	65	11.20	75	1519	997	10.23	0	0	0
Marzo	20.00	65	12.90	71	1519	1056	11.09	0	0	0
Aprile	20.00	65	15.50	67	1519	1179	12.76	0	0	0
Maggio	20.00	65	19.10	70	1519	1547	16.98	0	0	0
Giugno	20.00	65	23.50	65	1519	1881	20.10	0	0	0
Luglio	20.00	65	26.50	58	1519	2007	21.15	0	0	0
Agosto	20.00	65	26.50	67	1519	2318	23.52	0	0	0
Settembre	20.00	65	24.10	66	1519	1980	20.93	0	0	0
Ottobre	20.00	65	19.90	68	1519	1579	17.30	0	0	0
Novembre	20.00	65	15.90	71	1519	1282	14.05	0	0	0
Dicembre	20.00	65	12.30	72	1519	1029	10.71	0	0	0

- La parete non è soggetta a fenomeni di condensa interstiziale.
- La parete non è soggetta a fenomeni di condensa superficiale.

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m ³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRA	FIA E VERI	FICA T	ERMO IGROMETRICA	
STRATIGRAFIA			DIAGRAMMA DI GLASER	
El magade invalues français de la filia de la mana, comman electric de l'adoption count de experiencement.			(2) I speak to reduce a larger ordings of peaks for this means assume a reduce or to depend control for element control.	

Legenda:

Cod. Struttura: Div003 - Descrizione Struttura: Divisorio Interno 20cm

Tipo Struttura : PARETE

Spessore totale :23.0[cm]Classificazione della parete :PARETEOPACOColore della parete :Medio-Velocità del vento :4.0[m/s]Trasmittanza U calcolata :1.311[W/m² K]

 Velocità dei vento :
 4.0
 [m/s]

 Trasmittanza U calcolata :
 1.311
 [W/m² K]

 Incremento % di sicurezza :
 0
 [%]

 Trasmittanza U adottata :
 1.311
 [W/m² K]

Descrizione tipo divisorio Divisorio separazione tra locali

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	307	Malta di calce o calce cemento	1.50	0.899	0	1800	0.02	0.91	20	27.00
2	557	Blocco semipieni 1.1.07 200 mm	20.00	0	2.13	1400	0.47	0.92	1	280.00
3	307	Malta di calce o calce cemento	1.50	0.899	0	1800	0.02	0.91	20	27.00

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

STRATIGRAFIA STRATIGRAFIA DIAGRAMMA DI GLASER

Legenda:

Linea Rossa
Linea BluTemperatura[°C]Linea VerdePressione di saturazione[kPa]Linea VerdePressione di vapore[kPa]

Cod. Struttura: PE130P - Descrizione Struttura: Par. c.t. pietra 130

Tipo Struttura: Parete 129.5 Spessore totale: [cm] Classificazione della parete: Parete Opaco Colore della parete: Medio Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 0.467 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] Trasmittanza U adottata: 0.467 $[W/m^2 K]$

Capacità termica areica interna :13.21 $[kJ/m^2 K]$ Capacità termica areica esterna :183.73 $[kJ/m^2 K]$ Fattore di attenuazione \mathbf{fa} :0.00-Sfasamento $\Delta \mathbf{t_f}$:6.66[h]Trasmittanza termica periodica \mathbf{Yie} : $\mathbf{0.00}$ $[W/m^2 K]$

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	318	Pannello di cartongesso	1.50	0.600	0	750	0.03	0.84	8	11.25
2	401	Aria in quiete T = 293 K	3.00	0.026	0	1	1.15	1.00	1	0.03
3	533	Muratura in pietra naturale	125.00	1.500	0	2000	0.83	0.84	50	2500.00

CONDIZIONI AL CONTORNO DELLA STRUTTURA										
	Tinterna [°C]	U. R. interna [%]	Testerna [°C]	U. R. esterna [%]						
Invernale	20.0	65.0	10.7	85.9						

Verifica Termo-Igrometrica

Mese	Temp.int.	Um.Rel.int	Temp.est.	Um.Rel.est	Pi	Pe	Temp.min.	FRSI	Gc	Ma
	[°C]	[%]	[°C]	[%]	[Pa]	[Pa]	[°C]		[kg/m ²]	[kg/m ²]
Gennaio	20.00	65	10.70	86	1519	900	8.71	0	0	0
Febbraio	20.00	65	11.20	75	1519	997	10.23	0	0	0
Marzo	20.00	65	12.90	71	1519	1056	11.09	0	0	0
Aprile	20.00	65	15.50	67	1519	1179	12.76	0	0	0
Maggio	20.00	65	19.10	70	1519	1547	16.98	0	0	0
Giugno	20.00	65	23.50	65	1519	1881	20.10	0	0	0
Luglio	20.00	65	26.50	58	1519	2007	21.15	0	0	0
Agosto	20.00	65	26.50	67	1519	2318	23.52	0	0	0
Settembre	20.00	65	24.10	66	1519	1980	20.93	0	0	0
Ottobre	20.00	65	19.90	68	1519	1579	17.30	0	0	0
Novembre	20.00	65	15.90	71	1519	1282	14.05	0	0	0
Dicembre	20.00	65	12.30	72	1519	1029	10.71	0	0	0

- La parete non è soggetta a fenomeni di condensa interstiziale.
- La parete non è soggetta a fenomeni di condensa superficiale.

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

	STRATIGRAFIA	DIAGRAMMA DI GLASER				
	(2) Specials residuate transpare subspace if prosition on to the own question, resistant radiations that of subspaces remark after all persons crosses.		(ii) Specials includes language origins (i) greater as it for one quasar, narranes origins, to be observed as the contract of the statement of			
1		l				

Legenda:

Linea Rossa
Linea BluTemperatura[°C]Linea VerdePressione di saturazione[kPa]Linea VerdePressione di vapore[kPa]

Cod. Struttura: PI130P - Descrizione Struttura: Par. int. pietra 130

Tipo Struttura : Parete

130.0 Spessore totale: [cm] Classificazione della parete: Parete Opaco Colore della parete: Chiaro Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 0.870 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] Trasmittanza U adottata : 0.870 $[W/m^2 K]$

Descrizione tipo divisorio Divisorio separazione tra locali

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	307	Malta di calce o calce cemento	2.50	0.899	0	1800	0.03	0.91	20	45.00
2	533	Muratura in pietra naturale	125.00	1.500	0	2000	0.83	0.84	50	2500.00
3	307	Malta di calce o calce cemento	2.50	0.899	0	1800	0.03	0.91	20	45.00

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m ³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA				DIAGRAMMA DI GLASER				
	[2] Impación mutadano homogras ninigas. E preside en el Si de seu queste, momente a delsen. Enteñan el el subgenera nomes delle el presso consti.			(i) I promite installance longuepe subgras il promite cer i de su ann quante, montann e circum, trotheser de l'adoppenen rimoné altre e province corrett.				

Legenda:

Cod. Struttura: PE130 - Descrizione Struttura: Par. est. 130

Tipo Struttura : Parete

131.0 Spessore totale: [cm] Classificazione della parete: Parete Opaco Colore della parete: Medio Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 0.918 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] Trasmittanza U adottata : $[W/m^2\,K]$ 0.918 Capacità termica areica interna: 63.25 $[kJ/m^2 K]$ Capacità termica areica esterna: 104.53 $[kJ/m^2 K]$ Fattore di attenuazione **fa** : 0.00 8.04 Sfasamento Δt_f : [h] Trasmittanza termica periodica Yie: $[W/m^2 K]$ 0.00

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	311	Intonaco di calce e gesso	3.00	0.699	0	1400	0.04	0.84	10	42.00
2	533	Muratura in pietra naturale	125.00	1.500	0	2000	0.83	0.84	50	2500.00
3	311	Intonaco di calce e gesso	3.00	0.699	0	1400	0.04	0.84	10	42.00

CONDIZIONI AL CONTORNO DELLA STRUTTURA								
T. [°C] II D. [0/] T. [°C] II D. [0/]								
	Tinterna [°C]	U. R. interna [%]	Testerna [°C]	U. R. esterna [%]				
Invernale	20.0	65.0	10.7	85.9				

Verifica Termo-Igrometrica

Mese	Temp.int.	Um.Rel.int	Temp.est.	Um.Rel.est	Pi	Pe	Temp.min.	FRSI	Gc	Ma
	[°C]	[%]	[°C]	[%]	[Pa]	[Pa]	[°C]		[kg/m ²]	[kg/m ²]
Gennaio	20.00	65	10.70	86	1519	900	8.71	0	0	0
Febbraio	20.00	65	11.20	75	1519	997	10.23	0	0	0
Marzo	20.00	65	12.90	71	1519	1056	11.09	0	0	0
Aprile	20.00	65	15.50	67	1519	1179	12.76	0	0	0
Maggio	20.00	65	19.10	70	1519	1547	16.98	0	0	0
Giugno	20.00	65	23.50	65	1519	1881	20.10	0	0	0
Luglio	20.00	65	26.50	58	1519	2007	21.15	0	0	0
Agosto	20.00	65	26.50	67	1519	2318	23.52	0	0	0
Settembre	20.00	65	24.10	66	1519	1980	20.93	0	0	0
Ottobre	20.00	65	19.90	68	1519	1579	17.30	0	0	0
Novembre	20.00	65	15.90	71	1519	1282	14.05	0	0	0
Dicembre	20.00	65	12.30	72	1519	1029	10.71	0	0	0

- La parete non è soggetta a fenomeni di condensa interstiziale.
- La parete non è soggetta a fenomeni di condensa superficiale.

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

	GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA									
	STRATIGRAFIA		DIAGRAMMA DI GLASER							
© leads have been	SIRALIGKAFIA			DIAGRAMMA DI GLASER						

Legenda:

Cod. Struttura: PE100 - Descrizione Struttura: Par.est. 100

Tipo Struttura : Parete

101.0 Spessore totale: [cm] Classificazione della parete: Parete Opaco Colore della parete: Medio Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 1.125 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] Trasmittanza U adottata : 1.125 $[W/m^2\,K]$ Capacità termica areica interna: 63.13 $[kJ/m^2 K]$ Capacità termica areica esterna: 104.41 $[kJ/m^2 K]$ Fattore di attenuazione **fa** : 0.01 0.73 Sfasamento Δt_f : [h] Trasmittanza termica periodica Yie: $[W/m^2 K]$ 0.01

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	311	Intonaco di calce e gesso	3.00	0.699	0	1400	0.04	0.84	10	42.00
2	533	Muratura in pietra naturale	95.00	1.500	0	2000	0.63	0.84	50	1900.00
3	311	Intonaco di calce e gesso	3.00	0.699	0	1400	0.04	0.84	10	42.00

Condizioni al contorno della struttura								
	Tinterna [°C]	U. R. interna [%]	T _{esterna} [°C]	U. R. esterna [%]				
Invernale	20.0	65.0	10.7	85.9				

Verifica Termo-Igrometrica

Mese	Temp.int.	Um.Rel.int	Temp.est.	Um.Rel.est	Pi	Pe	Temp.min.	FRSI	Gc	Ma
	[°C]	[%]	[°C]	[%]	[Pa]	[Pa]	[°C]		[kg/m ²]	[kg/m ²]
Gennaio	20.00	65	10.70	86	1519	900	8.71	0	0	0
Febbraio	20.00	65	11.20	75	1519	997	10.23	0	0	0
Marzo	20.00	65	12.90	71	1519	1056	11.09	0	0	0
Aprile	20.00	65	15.50	67	1519	1179	12.76	0	0	0
Maggio	20.00	65	19.10	70	1519	1547	16.98	0	0	0
Giugno	20.00	65	23.50	65	1519	1881	20.10	0	0	0
Luglio	20.00	65	26.50	58	1519	2007	21.15	0	0	0
Agosto	20.00	65	26.50	67	1519	2318	23.52	0	0	0
Settembre	20.00	65	24.10	66	1519	1980	20.93	0	0	0
Ottobre	20.00	65	19.90	68	1519	1579	17.30	0	0	0
Novembre	20.00	65	15.90	71	1519	1282	14.05	0	0	0
Dicembre	20.00	65	12.30	72	1519	1029	10.71	0	0	0

- La parete non è soggetta a fenomeni di condensa interstiziale.
- La parete non è soggetta a fenomeni di condensa superficiale.

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA								
STRATIGRAFIA		DIAGRAMMA DI GLASER						
(g) Symbol reduce beingst singles (yands in the men speak, resides a state, before the indigenest state of the processes).			(g) by profit readour brought ships to the state space, section, where the independent model where processes.					

Legenda:

Cod. Struttura: PI90P - Descrizione Struttura: Par. int. pietra 90

Tipo Struttura : Parete

90.0 Spessore totale: [cm] Classificazione della parete: Parete Opaco Colore della parete: Chiaro Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: $[W/m^2 K]$ 1.133 Incremento % di sicurezza: 0 [%] Trasmittanza U adottata : 1.133 $[W/m^2 K]$

Descrizione tipo divisorio Divisorio separazione tra locali

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	307	Malta di calce o calce cemento	2.50	0.899	0	1800	0.03	0.91	20	45.00
2	533	Muratura in pietra naturale	85.00	1.500	0	2000	0.57	0.84	50	1700.00
3	307	Malta di calce o calce cemento	2.50	0.899	0	1800	0.03	0.91	20	45.00

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m ³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA	DIAGRAMMA DI GLASER				
[2] Improde readour brough orders (Frysial ris) for an expense, reasour a claims, brillian field a disperse created of the of process created.	To provide incident foreign alogue I provide at it is used quarter, monounce orbitals to the foreign monet of the of persons corest.				

Legenda:

Cod. Struttura: PI70P - Descrizione Struttura: Par. int.pietra 70

Tipo Struttura : Parete

70.0 Spessore totale: [cm] Classificazione della parete: Parete Opaco Colore della parete: Chiaro Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 1.335 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] Trasmittanza U adottata : 1.335 $[W/m^2 K]$

Descrizione tipo divisorio Divisorio separazione tra locali

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	307	Malta di calce o calce cemento	2.50	0.899	0	1800	0.03	0.91	20	45.00
2	533	Muratura in pietra naturale	65.00	1.500	0	2000	0.43	0.84	50	1300.00
3	307	Malta di calce o calce cemento	2.50	0.899	0	1800	0.03	0.91	20	45.00

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA	DIAGRAMMA DI GLASER
2 aqualité tradises français edique l'éposité n'el fe le sea equate, nomine a désea trades et à indiquents nomé d'ét a é province somé.	Supposed to conduct brought a finite of the first one passes, contained, ordered to be independent useful first of an experience of the state of

Legenda:

Cod. Struttura: PI50P - Descrizione Struttura: Par.int. pietra 50

Tipo Struttura : Parete

50.0 Spessore totale: [cm] Parete Classificazione della parete: Opaco Colore della parete: Chiaro Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 1.624 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] Trasmittanza U adottata : 1.624 $[W/m^2 K]$

Descrizione tipo divisorio Divisorio separazione tra locali

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	307	Malta di calce o calce cemento	2.50	0.899	0	1800	0.03	0.91	20	45.00
2	533	Muratura in pietra naturale	45.00	1.500	0	2000	0.30	0.84	50	900.00
3	307	Malta di calce o calce cemento	2.50	0.899	0	1800	0.03	0.91	20	45.00

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m ³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA	DIAGRAMMA DI GLASER				
[2] Improde readors through religion (in this case quasar, natures a delate, inclines the Ledgeress count of the of process count.	To provide incident foreign alogue I provide at it is used quarter, moreous windows technic at a longueste moral of the of persons corest.				

Legenda:

Cod. Struttura: PavIpog - Descrizione Struttura: Pavimento sala Ipoge

Pavimento

132.0 Spessore totale: [cm] Classificazione della parete: Pavimento Opaco Colore della parete: Medio Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 0.374 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%]

0.374

Capacità termica areica interna :35.49 $[kJ/m^2 K]$ Capacità termica areica esterna :158.82 $[kJ/m^2 K]$ Fattore di attenuazione \mathbf{fa} :0.00-Sfasamento $\Delta \mathbf{fr}$:15.58[h]Trasmittanza termica periodica \mathbf{Yie} : $\mathbf{0.00}$ $[W/m^2 K]$

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	696	Piastrelle in cotto	2.00	0.720	0	1800	0.03	0.84	7	36.00
2	7	Calcestruzzo perlite-vermiculite	15.00	0.150	0	400	1.00	0.88	40	60.00
3	6	Calcestruzzo sabbia e ghiaia	20.00	1.160	0	2000	0.17	0.88	70	400.00
4	531	Ciottoli e pietre frantumate	80.00	0.699	0	1500	1.14	0.84	5	1200.00
5	21	Sottofondo els magro	15.00	0.930	0	2200	0.16	0.88	70	330.00

 $[W/m^2 K]$

	CONDIZIONI AL CONTORNO DELLA STRUTTURA									
	Tinterna [°C] U. R. interna [%] Testerna [°C] U. R. esterna [%]									
Invernale	7 1 200									

Verifica Termo-Igrometrica

Tipo Struttura:

Trasmittanza U adottata:

Mese	Temp.int.	Um.Rel.int	Temp.est.	Um.Rel.est	Pi	Pe	Temp.min.	FRSI	Gc	Ma
	[°C]	[%]	[°C]	[%]	[Pa]	[Pa]	[°C]		[kg/m ²]	[kg/m ²]
Gennaio	20.00	65	10.70	86	1519	900	8.71	0	0	0
Febbraio	20.00	65	11.20	75	1519	997	10.23	0	0	0
Marzo	20.00	65	12.90	71	1519	1056	11.09	0	0	0
Aprile	20.00	65	15.50	67	1519	1179	12.76	0	0	0
Maggio	20.00	65	19.10	70	1519	1547	16.98	0	0	0
Giugno	20.00	65	23.50	65	1519	1881	20.10	0	0	0
Luglio	20.00	65	26.50	58	1519	2007	21.15	0	0	0
Agosto	20.00	65	26.50	67	1519	2318	23.52	0	0	0
Settembre	20.00	65	24.10	66	1519	1980	20.93	0	0	0
Ottobre	20.00	65	19.90	68	1519	1579	17.30	0	0	0
Novembre	20.00	65	15.90	71	1519	1282	14.05	0	0	0
Dicembre	20.00	65	12.30	72	1519	1029	10.71	0	0	0

- La parete non è soggetta a fenomeni di condensa interstiziale.
- La parete non è soggetta a fenomeni di condensa superficiale.

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRA	FIA E VERI	FICA T	ERMO IGROMETRICA	
STRATIGRAFIA			DIAGRAMMA DI GLASER	
Company analose françois religios (resiste for the transcription, contract, contract, contract, contract, princip contr			Expension to readour broughts of the first the continuous continuous continuous control of the common control of the co	

Legenda:

Linea Rossa
Linea BluTemperatura[°C]Pressione di saturazione[kPa]Linea VerdePressione di vapore[kPa]

Cod. Struttura: Solpog - Descrizione Struttura: Solaio Sala Ipogea

Tipo Struttura: Soffitto

Trasmittanza termica periodica Yie:

36.3 Spessore totale: [cm] Classificazione della parete : Soffitto Opaco Colore della parete: Chiaro Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: $[W/m^2 K]$ 0.370 Incremento % di sicurezza: 0 [%] 0.370 Trasmittanza U adottata: $[W/m^2 K]$ Capacità termica areica interna: 31.49 $[kJ/m^2 K]$ Capacità termica areica esterna: 112.69 $[kJ/m^2 K]$ 0.14 Fattore di attenuazione fa: Sfasamento Δt_f : 11.87 [h] $[W/m^2 K]$

0.05

Valore $[W/m^2 K]$ 0.20 Verifica Si limite

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	314	Intonaco isolante	2.50	0.120	0	400	0.21	0.84	12	10.00
2	714	Soletta in laterizio	20.00	0.360	0	1100	0.56	0.84	6	220.00
3	373	Carta e cartone bitumato	0.40	0.230	0	1100	0.02	1.00	2500	4.40
4	199	Poliuretano espanso	6.00	0.035	0	30	1.71	1.30	80	1.80
5	373	Carta e cartone bitumato	0.40	0.230	0	1100	0.02	1.00	2500	4.40
6	5	Calcestruzzo ordinario	5.00	1.280	0	2200	0.04	0.88	70	110.00
7	701	Piastrelle in cemento e ghiaia	2.00	1.399	0	2000	0.01	0.84	100	40.00

CONDIZIONI AL CONTORNO DELLA STRUTTURA T_{interna} [°C] U. R. esterna [%] 85.9 U. R. interna [%] Testerna [°C] 65.0 10.7 Invernale

Verifica Termo-Igrometrica

Mese	Temp.int.	Um.Rel.int	Temp.est.	Um.Rel.est	Pi	Pe	Temp.min.	FRSI	Gc	Ma
	[°C]	[%]	[°C]	[%]	[Pa]	[Pa]	[°C]		[kg/m ²]	[kg/m ²]
Gennaio	20.00	65	10.70	86	1519	900	8.71	0	0	0
Febbraio	20.00	65	11.20	75	1519	997	10.23	0	0	0
Marzo	20.00	65	12.90	71	1519	1056	11.09	0	0	0
Aprile	20.00	65	15.50	67	1519	1179	12.76	0	0	0
Maggio	20.00	65	19.10	70	1519	1547	16.98	0	0	0
Giugno	20.00	65	23.50	65	1519	1881	20.10	0	0	0
Luglio	20.00	65	26.50	58	1519	2007	21.15	0	0	0
Agosto	20.00	65	26.50	67	1519	2318	23.52	0	0	0
Settembre	20.00	65	24.10	66	1519	1980	20.93	0	0	0
Ottobre	20.00	65	19.90	68	1519	1579	17.30	0	0	0
Novembre	20.00	65	15.90	71	1519	1282	14.05	0	0	0
Dicembre	20.00	65	12.30	72	1519	1029	10.71	0	0	0

- La parete non è soggetta a fenomeni di condensa interstiziale.
- La parete non è soggetta a fenomeni di condensa superficiale.

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m ³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA									
STRATIGRAFIA		DIAGRAMMA DI GLASER							
(2) Impails outsides Images chique. Equalità cui le la son quale, norman y chiano. In disea de s'adoptima disea d'il est preses creat.			[2] Specials conducted recognition of the first the same years, reconstant a deleter for indepenses recorded the of access constall.						

Legenda:

Linea Rossa
Linea BluTemperatura[°C]Linea VerdePressione di saturazione[kPa]Linea VerdePressione di vapore[kPa]

Cod. Struttura: Parvetr - Descrizione Struttura: Parete Vetrata

Tipo Struttura: Parete

Spessore totale: 1.5 [cm] Classificazione della parete: Trasparente Parete Chiaro Colore della parete: Velocità del vento: 2.6 [m/s] $[W/m^2 K]$ Trasmittanza U calcolata: 2.424 Incremento % di sicurezza: 0 [%] Trasmittanza U adottata: 2.424 $[W/m^2 K]$ Capacità termica areica interna: 31.49 $[kJ/m^2 K]$ Capacità termica areica esterna: 112.69 $[kJ/m^2 K]$ Fattore di attenuazione fa: 0.14 Sfasamento Δt_f : 11.87 [h]

 Valore
 0.12
 [W/m² K]

 Werifica
 Verifica

N°	Cod.Mat.	Descrizione Strato	Spessor	Lambda	Cond.	Densità	RT	CT	MU	MA
			e					M		
1	496	Vetro cellulare espanso	0.80	0.055	0	130	0.15	0.84	99999999	1.04
2	385	Policloruro di vinile (PVC)	0.05	0.160	0	1400	0.00	1.30	10000	0.70
3	496	Vetro cellulare espanso	0.60	0.055	0	130	0.11	0.84	99999999	0.78

Legenda:

limite

 $[kg/m^3]$ Ν° Strato del materiale Densità Densità del materiale Cod.Mat. Codice del materiale RT $[m^2K/W]$ Resistenza termica Spessore dello strato [KJ/kg K] Spessore [cm] CTM Capacità termica massica Lambda Conduttività termica [W/m K] MU Permeabilità al vapore Conduttanza termica [m K/W] MA Massa areica dello strato Cond. $[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA	DIAGRAMMA DI GLASER	
Demandate shandare from gar colleges. I preside out the tax deen operate, decrease a challent for the land present control and to a process control.	[3] Impossible incodern longular chapter (possible for it the season quasar, constants a debase, londware for a chaptered content of the a parameter content.	

Legenda:

Linea RossaTemperatura[°C]Linea BluPressione di saturazione[kPa]Linea VerdePressione di vapore[kPa]

Si

Cod. Struttura: VtrM - Descrizione Struttura: Par. vtr. pad musica

Tipo Struttura : Parete

 Spessore totale :
 3.9
 [cm]

 Classificazione della parete :
 Parete
 Trasparente

 Colore della parete :
 Chiaro

 Velocità del vento :
 2.6
 [m/s]

Capacità termica areica interna :31.49 $[kJ/m^2 K]$ Capacità termica areica esterna :112.69 $[kJ/m^2 K]$ Fattore di attenuazione \mathbf{fa} :0.14-Sfasamento $\Delta \mathbf{f}_f$:11.87[h]Trasmittanza termica periodica \mathbf{Yie} : $\mathbf{0.05}$ $[W/m^2 K]$

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CT	MU	MA
								M		
1	494	Vetro cellulare	0.80	0.066	0	180	0.12	0.84	1000000	1.44
2	502	Polietilene compatto	0.05	0.350	0	950	0.00	1.30	50000	0.48
3	494	Vetro cellulare	0.80	0.066	0	180	0.12	0.84	1000000	1.44
4	401	Aria in quiete T = 293 K	1.00	0.026	0	1	0.38	1.00	1	0.01
5	494	Vetro cellulare	0.60	0.066	0	180	0.09	0.84	1000000	1.08
6	502	Polietilene compatto	0.03	0.350	0	950	0.00	1.30	50000	0.28
7	494	Vetro cellulare	0.60	0.066	0	180	0.09	0.84	1000000	1.08

Legenda:

Ν° Strato del materiale Densità del materiale $[kg/m^3]$ $[m^2K/W]$ Cod.Mat. Resistenza termica Codice del materiale RTSpessore Spessore dello strato [cm] CTM Capacità termica massica [KJ/kg K] Lambda Conduttività termica [W/m K] MUPermeabilità al vapore Conduttanza termica [m K/W] MA Massa areica dello strato [kg/m²] Cond.

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA	DIAGRAMMA DI GLASER
[3] Impression from the company cological. Equation for it for a size operator, received an electric technique and other and and an experiment countries.	[2] Impaction marketers beinger relayer of product on 1 for an expression, number or an independent model that a general consist.

Legenda:

Cod. Struttura: VtrF - Descrizione Struttura: Vetro camera

Tipo Struttura : Parete

Spessore totale: 1.4 [cm] Classificazione della parete: Parete Trasparente Chiaro Colore della parete: Velocità del vento: 2.6 [m/s] $[W/m^2 K]$ Trasmittanza U calcolata: 2.547 Incremento % di sicurezza: 0 [%] 2.547 Trasmittanza U adottata: $[W/m^2 K]$ Capacità termica areica interna: 31.49 $[kJ/m^2 K]$ Capacità termica areica esterna: 112.69 $[kJ/m^2 K]$ Fattore di attenuazione fa: 0.14 Sfasamento Δt_f : 11.87 [h] Trasmittanza termica periodica Yie: 0.05 $[W/m^2 K]$

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CT	MU	MA
								M		
1	493	Vetro normale	0.40	1.150	0	2500	0.00	0.84	10000000	10.00
2	401	Aria in quiete T = 293 K	0.60	0.026	0	1	0.23	1.00	1	0.01
3	493	Vetro normale	0.40	1.150	0	2500	0.00	0.84	10000000	10.00

Legenda:

 $[kg/m^3]$ Ν° Strato del materiale Densità Densità del materiale Cod.Mat. Codice del materiale RT $[m^2K/W]$ Resistenza termica Spessore dello strato [KJ/kg K] Spessore [cm] CTM Capacità termica massica Lambda Conduttività termica [W/m K] MU Permeabilità al vapore Conduttanza termica [m K/W] MA Massa areica dello strato Cond. $[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA	DIAGRAMMA DI GLASER				
The product studies througher ordeges if you also for it for the season processes a clothers, before the I coloqueres record of the of process cross.	[2] Instable studies brought edges (public for the season quase, notions or observe for longuesco round of the or present contribution).				

Legenda:

Cod. Struttura: PE41 - Descrizione Struttura: Par est. c.a. mus.

Tipo Struttura: PARETE

48.0 Spessore totale: [cm] Classificazione della parete : PARETE Opaco Colore della parete: Medio Velocità del vento: 4.0 [m/s]Trasmittanza U calcolata: 0.443 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] 0.443 Trasmittanza U adottata: $[W/m^2 K]$ Capacità termica areica interna: 14.10 $[kJ/m^2 K]$ Capacità termica areica esterna: 104.47 $[kJ/m^2 K]$ Fattore di attenuazione **fa** : 0.07 13.81 Sfasamento Δt_f : [h] $[W/m^2 K]$ Trasmittanza termica periodica Yie: 0.03

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CT	MU	MA
								M		
1	318	Pannello di cartongesso	2.00	0.600	0	750	0.03	0.84	8	15.00
2	367	Fogli di materiale sintetico	0.01	0.230	0	1100	0.00	1.30	10000	0.11
3	401	Aria in quiete T = 293 K	4.00	0.026	0	1	1.54	1.00	1	0.04
4	83	Parete esterna cls armato	40.00	0.800	0	1600	0.50	0.88	20	640.00
5	310	Intonaco di cemento	2.00	1.400	0	2000	0.01	0.84	20	40.00

Verifica Termo-Igrometrica

Mese	Temp.int.	Um.Rel.int	Temp.est.	Um.Rel.est	Pi	Pe	Temp.min.	FRSI	Gc	Ma
	[°C]	[%]	[°C]	[%]	[Pa]	[Pa]	[°C]		[kg/m ²]	[kg/m ²]
Gennaio	20.00	65	10.70	86	1519	900	8.71	0	0	0
Febbraio	20.00	65	11.20	75	1519	997	10.23	0	0	0
Marzo	20.00	65	12.90	71	1519	1056	11.09	0	0	0
Aprile	20.00	65	15.50	67	1519	1179	12.76	0	0	0
Maggio	20.00	65	19.10	70	1519	1547	16.98	0	0	0
Giugno	20.00	65	23.50	65	1519	1881	20.10	0	0	0
Luglio	20.00	65	26.50	58	1519	2007	21.15	0	0	0
Agosto	20.00	65	26.50	67	1519	2318	23.52	0	0	0
Settembre	20.00	65	24.10	66	1519	1980	20.93	0	0	0
Ottobre	20.00	65	19.90	68	1519	1579	17.30	0	0	0
Novembre	20.00	65	15.90	71	1519	1282	14.05	0	0	0
Dicembre	20.00	65	12.30	72	1519	1029	10.71	0	0	0

- La parete non è soggetta a fenomeni di condensa interstiziale.
- La parete non è soggetta a fenomeni di condensa superficiale.

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m ³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	[kg/m ²]

GRAFICI STRATIGR	AFIA E VERIFICA TERMO IGROMETRICA					
STRATIGRAFIA	DIAGRAMMA DI GLASER					
Should have have noted to be a rise. These transport and a risport and a						

Legenda:

Cod. Struttura: PIca - Descrizione Struttura: Par Int. c.a.

Tipo Struttura : PARETE

42.0 Spessore totale: [cm] Classificazione della parete: PARETE Opaco Colore della parete: Chiaro Velocità del vento: 4.0 [m/s]Trasmittanza U calcolata: 1.268 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] 1.268 Trasmittanza U adottata: $[W/m^2 K]$

Descrizione tipo divisorio Divisorio separazione tra locali

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	311	Intonaco di calce e gesso	2.00	0.699	0	1400	0.03	0.84	10	28.00
2	83	Parete esterna cls armato	40.00	0.800	0	1600	0.50	0.88	20	640.00

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	$[kg/m^3]$
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA	DIAGRAMMA DI GLASER
Separation conductor through neighbor for this or can exceed conductor to detail conductor to delignment count of the or process counts.	[3] results resident longer object for all to a set speak, motion a detail londer to I objective model did a a genor series.

Legenda:

Cod. Struttura: PE1pm - Descrizione Struttura: Par. est. 1 p. mus.

Tipo Struttura: Parete 33.0 Spessore totale: [cm] Parete Classificazione della parete: Opaco Colore della parete: Medio Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 0.461 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] 0.461 $[W/m^2\,K]$ Trasmittanza U adottata: 15.08 Capacità termica areica interna: $[kJ/m^2 K]$ Capacità termica areica esterna: 97.74 $[kJ/m^2 K]$ Fattore di attenuazione **fa** : 0.18 Sfasamento Δt_f : 10.17 [h]

0.08

 $[W/m^2 K]$

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	318	Pannello di cartongesso	2.00	0.600	0	750	0.03	0.84	8	15.00
2	367	Fogli di materiale sintetico	0.01	0.230	0	1100	0.00	1.30	1000	0.11
									0	
3	401	Aria in quiete T = 293 K	4.00	0.026	0	1	1.54	1.00	1	0.04
4	143	Par. esterna cls argilla esp.	25.00	0.609	0	1500	0.41	0.92	18	375.00
5	310	Intonaco di cemento	2.00	1.400	0	2000	0.01	0.84	20	40.00

CONDIZIONI AL CONTORNO DELLA STRUTTURA							
T [0C] II D [0/] T [0C] II D [0/]							
	Tinterna [°C]	U. R. interna [%]	T _{esterna} [°C]	U. R. esterna [%]			
Invernale	20.0	65.0	10.7	85.9			

Verifica Termo-Igrometrica

Trasmittanza termica periodica Yie:

Mese	Temp.int.	Um.Rel.int	Temp.est.	Um.Rel.est	Pi	Pe	Temp.min.	FRSI	Gc	Ma
	[°C]	[%]	[°C]	[%]	[Pa]	[Pa]	[°C]		[kg/m ²]	[kg/m ²]
Gennaio	20.00	65	10.70	86	1519	900	8.71	0	0	0
Febbraio	20.00	65	11.20	75	1519	997	10.23	0	0	0
Marzo	20.00	65	12.90	71	1519	1056	11.09	0	0	0
Aprile	20.00	65	15.50	67	1519	1179	12.76	0	0	0
Maggio	20.00	65	19.10	70	1519	1547	16.98	0	0	0
Giugno	20.00	65	23.50	65	1519	1881	20.10	0	0	0
Luglio	20.00	65	26.50	58	1519	2007	21.15	0	0	0
Agosto	20.00	65	26.50	67	1519	2318	23.52	0	0	0
Settembre	20.00	65	24.10	66	1519	1980	20.93	0	0	0
Ottobre	20.00	65	19.90	68	1519	1579	17.30	0	0	0
Novembre	20.00	65	15.90	71	1519	1282	14.05	0	0	0
Dicembre	20.00	65	12.30	72	1519	1029	10.71	0	0	0

- La parete non è soggetta a fenomeni di condensa interstiziale.
- La parete non è soggetta a fenomeni di condensa superficiale.

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m ³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

	GRAFICI STRATIGRA	FIA E VERI	FICA T	ERMO IGROMETRICA					
	STRATIGRAFIA		DIAGRAMMA DI GLASER						
(a)	Transport refuse. I caselle for this are seen, resonant, unless traditions are l'adoptives avenuelle le primer comm.			Street makes began stage. Finds in 18 in the pass, counts, other to be the co-tribution made for a pass made.					

Legenda:

Cod. Struttura: PAvpm - Descrizione Struttura: Pav pad. musica

Tipo Struttura : Pavimento

28.5 Spessore totale: [cm] Pavimento Classificazione della parete: Opaco Colore della parete: Medio Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 0.970 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] Trasmittanza U adottata : 0.970 $[W/m^2 K]$

Descrizione tipo divisorio Divisorio separazione tra locali

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	695	Pavimento in legno	1.50	0.220	0	850	0.07	2.40	60	12.75
2	5	Calcestruzzo ordinario	5.00	1.280	0	2200	0.04	0.88	70	110.00
3	714	Soletta in laterizio	20.00	0.360	0	1100	0.56	0.84	6	220.00
4	311	Intonaco di calce e gesso	2.00	0.699	0	1400	0.03	0.84	10	28.00

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA	DIAGRAMMA DI GLASER					
[2] Impossible relations from pre-cologies. Equalitie in a fit on anter-qualities, describes a del cologiesero consist of the ed previous consist.			[2] Specialis reactioner learnings analysis. If provide the 1-th an earn specials, constraints and others, localized and other provides constraints.			

Legenda:

Cod. Struttura: SolPM - Descrizione Struttura: Sol. pad. musica

Tipo Struttura: Soffitto

57.0 Spessore totale: [cm] Classificazione della parete: Soffitto Opaco Colore della parete: Medio Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 0.089 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] Trasmittanza U adottata : 0.089 $[W/m^2\,K]$ 11.39 Capacità termica areica interna: $[kJ/m^2 K]$ Capacità termica areica esterna: 77.00 $[kJ/m^2 K]$ Fattore di attenuazione **fa** : 0.14 Sfasamento Δt_f : 11.17 [h] Trasmittanza termica periodica Yie: $[W/m^2 K]$

0.01

Valore $[W/m^2 K]$ 0.20 Verifica Si limite

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	318	Pannello di cartongesso	1.50	0.600	0	750	0.03	0.84	8	11.25
2	367	Fogli di materiale sintetico	0.05	0.230	0	1100	0.00	1.30	1000	0.55
									0	
3	215	Pannello rigido lana vetro 30 mm	3.00	0.040	0	30	0.75	0.84	1	0.90
4	367	Fogli di materiale sintetico	0.05	0.230	0	1100	0.00	1.30	1000	0.55
									0	
5	401	Aria in quiete T = 293 K	25.00	0.026	0	1	9.62	1.00	1	0.25
6	714	Soletta in laterizio	20.00	0.360	0	1100	0.56	0.84	6	220.00
7	373	Carta e cartone bitumato	0.40	0.230	0	1100	0.02	1.00	2500	4.40
8	4	Cls di argilla espansa	5.00	0.350	0	1100	0.14	0.92	10	55.00
9	701	Piastrelle in cemento e ghiaia	2.00	1.399	0	2000	0.01	0.84	100	40.00

CONDIZIONI AL CONTORNO DELLA STRUTTURA										
	Tinterna [°C]	U. R. interna [%]	Testerna [°C]	U. R. esterna [%]						
Invernale	20.0	65.0	10.7	85.9						

Verifica Termo-Igrometrica

Mese	Temp.int.	Um.Rel.int	Temp.est.	Um.Rel.est	Pi	Pe	Temp.min.	FRSI	Gc	Ma
	[°C]	[%]	[°C]	[%]	[Pa]	[Pa]	[°C]		[kg/m ²]	[kg/m ²]
Gennaio	20.00	65	10.70	86	1519	900	8.71	0	0	0
Febbraio	20.00	65	11.20	75	1519	997	10.23	0	0	0
Marzo	20.00	65	12.90	71	1519	1056	11.09	0	0	0
Aprile	20.00	65	15.50	67	1519	1179	12.76	0	0	0
Maggio	20.00	65	19.10	70	1519	1547	16.98	0	0	0
Giugno	20.00	65	23.50	65	1519	1881	20.10	0	0	0
Luglio	20.00	65	26.50	58	1519	2007	21.15	0	0	0
Agosto	20.00	65	26.50	67	1519	2318	23.52	0	0	0
Settembre	20.00	65	24.10	66	1519	1980	20.93	0	0	0
Ottobre	20.00	65	19.90	68	1519	1579	17.30	0	0	0
Novembre	20.00	65	15.90	71	1519	1282	14.05	0	0	0
Dicembre	20.00	65	12.30	72	1519	1029	10.71	0	0	0

- La parete non è soggetta a fenomeni di condensa interstiziale.
- La parete non è soggetta a fenomeni di condensa superficiale.

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

STRATIGRAFIA	DIAGRAMMA DI GLA	ASER
Impealsh shadows brought objects (position to 1 for some quality, sections a statum, bushess dart indisperses found after and process correst.	Expension incoheres brougher objects if punish for this season quarter, incomes a statem, bothers the indepenses recent dies of process contribution.	

Legenda:

Cod. Struttura: LucPM - Descrizione Struttura: Luicernaio PM

Tipo Struttura: Soffitto

Spessore totale: 1.4 [cm] Classificazione della parete: Soffitto Trasparente Chiaro Colore della parete: Velocità del vento: 2.6 [m/s] $[W/m^2 K]$ Trasmittanza U calcolata: 2.173 Incremento % di sicurezza: 0 [%] Trasmittanza U adottata: 2.173 $[W/m^2 K]$ Capacità termica areica interna: 11.39 $[kJ/m^2 K]$ Capacità termica areica esterna: 77.00 $[kJ/m^2 K]$ Fattore di attenuazione fa: 0.14 Sfasamento Δt_f : 11.17 [h] Trasmittanza termica periodica Yie: 0.01 $[W/m^2 K]$

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	494	Vetro cellulare	0.40	0.066	0	180	0.06	0.84	1000	0.72
									000	
2	401	Aria in quiete T = 293 K	0.40	0.026	0	1	0.15	1.00	1	0.00
3	494	Vetro cellulare	0.60	0.066	0	180	0.09	0.84	1000	1.08
									000	

Legenda:

Ν° Strato del materiale Densità del materiale $[kg/m^3]$ Cod.Mat. Codice del materiale RTResistenza termica $[m^2K/W]$ Spessore dello strato [KJ/kg K] CTM Capacità termica massica [cm] Spessore Lambda Conduttività termica [W/m K]MU Permeabilità al vapore Conduttanza termica [m K/W] MA Massa areica dello strato $[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA	DIAGRAMMA DI GLASER
Propulse deadners from part or dept. It yould not be to state quarter, execution a detain. To discuss the in disquesses should all the of process counts.	The special includes brought edges (yield it is the same years, tender of stem, broken it is below in the process and

Legenda:

Cod. Struttura: PE90 - Descrizione Struttura: Par.est. 90

Tipo Struttura : Parete

Trasmittanza termica periodica Yie:

91.0 Spessore totale: [cm] Parete Classificazione della parete: Opaco Colore della parete: Medio Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 1.216 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] Trasmittanza U adottata : 1.216 $[W/m^2\,K]$ Capacità termica areica interna: 63.00 $[kJ/m^2 K]$ Capacità termica areica esterna: 104.27 $[kJ/m^2 K]$ Fattore di attenuazione **fa** : 0.01 22.29 Sfasamento Δt_f : [h]

0.02

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	311	Intonaco di calce e gesso	3.00	0.699	0	1400	0.04	0.84	10	42.00
2	533	Muratura in pietra naturale	85.00	1.500	0	2000	0.57	0.84	50	1700.0 0
3	311	Intonaco di calce e gesso	3.00	0.699	0	1400	0.04	0.84	10	42.00

 $[W/m^2 K]$

	CONDIZIONI AL CONTORNO DELLA STRUTTURA							
	T _{interna} [°C]	U. R. interna [%]	T _{esterna} [°C]	U. R. esterna [%]				
Invernale	20.0	65.0	10.7	85.9				

Verifica Termo-Igrometrica

Mese	Temp.int.	Um.Rel.int	Temp.est.	Um.Rel.est	Pi	Pe	Temp.min.	FRSI	Gc	Ma
	[°C]	[%]	[°C]	[%]	[Pa]	[Pa]	[°C]		[kg/m ²]	[kg/m ²]
Gennaio	20.00	65	10.70	86	1519	900	8.71	0	0	0
Febbraio	20.00	65	11.20	75	1519	997	10.23	0	0	0
Marzo	20.00	65	12.90	71	1519	1056	11.09	0	0	0
Aprile	20.00	65	15.50	67	1519	1179	12.76	0	0	0
Maggio	20.00	65	19.10	70	1519	1547	16.98	0	0	0
Giugno	20.00	65	23.50	65	1519	1881	20.10	0	0	0
Luglio	20.00	65	26.50	58	1519	2007	21.15	0	0	0
Agosto	20.00	65	26.50	67	1519	2318	23.52	0	0	0
Settembre	20.00	65	24.10	66	1519	1980	20.93	0	0	0
Ottobre	20.00	65	19.90	68	1519	1579	17.30	0	0	0
Novembre	20.00	65	15.90	71	1519	1282	14.05	0	0	0
Dicembre	20.00	65	12.30	72	1519	1029	10.71	0	0	0

- La parete non è soggetta a fenomeni di condensa interstiziale.
- La parete non è soggetta a fenomeni di condensa superficiale.

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRA	AFIA E VERIFICA TERMO IGROMETRICA
STRATIGRAFIA	DIAGRAMMA DI GLASER
SIRAIIGKAFIA	DIAGRAMMA DI GLASER

Legenda:

Cod. Struttura: PE80 - Descrizione Struttura: Par. est. 80

Tipo Struttura : Parete

Trasmittanza termica periodica Yie:

81.0 Spessore totale: [cm] Parete Classificazione della parete: Opaco Colore della parete: Medio Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 1.323 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] Trasmittanza U adottata : $[W/m^2\,K]$ 1.323 Capacità termica areica interna: 62.93 $[kJ/m^2 K]$ Capacità termica areica esterna: 104.15 $[kJ/m^2 K]$ Fattore di attenuazione **fa** : 0.03 19.85 Sfasamento Δt_f : [h]

0.03

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	311	Intonaco di calce e gesso	3.00	0.699	0	1400	0.04	0.84	10	42.00
2	533	Muratura in pietra naturale	75.00	1.500	0	2000	0.50	0.84	50	1500.0 0
3	311	Intonaco di calce e gesso	3.00	0.699	0	1400	0.04	0.84	10	42.00

 $[W/m^2 K]$

	Condi	ZIONI AL CONTORNO DELLA	STRUTTURA	
	T _{interna} [°C]	U. R. interna [%]	Testerna [°C]	U. R. esterna [%]
Invernale	20.0	65.0	10.7	85.9

Verifica Termo-Igrometrica

Mese	Temp.int.	Um.Rel.int	Temp.est.	Um.Rel.est	Pi	Pe	Temp.min.	FRSI	Gc	Ma
	[°C]	[%]	[°C]	[%]	[Pa]	[Pa]	[°C]		[kg/m ²]	[kg/m ²]
Gennaio	20.00	65	10.70	86	1519	900	8.71	0	0	0
Febbraio	20.00	65	11.20	75	1519	997	10.23	0	0	0
Marzo	20.00	65	12.90	71	1519	1056	11.09	0	0	0
Aprile	20.00	65	15.50	67	1519	1179	12.76	0	0	0
Maggio	20.00	65	19.10	70	1519	1547	16.98	0	0	0
Giugno	20.00	65	23.50	65	1519	1881	20.10	0	0	0
Luglio	20.00	65	26.50	58	1519	2007	21.15	0	0	0
Agosto	20.00	65	26.50	67	1519	2318	23.52	0	0	0
Settembre	20.00	65	24.10	66	1519	1980	20.93	0	0	0
Ottobre	20.00	65	19.90	68	1519	1579	17.30	0	0	0
Novembre	20.00	65	15.90	71	1519	1282	14.05	0	0	0
Dicembre	20.00	65	12.30	72	1519	1029	10.71	0	0	0

- La parete non è soggetta a fenomeni di condensa interstiziale.
- La parete non è soggetta a fenomeni di condensa superficiale.

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA							
STRATIGRAFIA		DIAGRAMMA DI GLASER					
A special number langue singue Equals on the same quant, number obtains the singueue most of the Equation could			(2) promite made integer ridges (yada er i fe som yada, mateur a desen miles en i adaptes med e fe e prome cont				

Legenda:

Cod. Struttura: PE70 - Descrizione Struttura: Par. est. 70

Tipo Struttura : Parete

71.0 Spessore totale: [cm] Classificazione della parete: Parete Opaco Colore della parete: Medio Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 1.451 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] Trasmittanza U adottata : 1.451 $[W/m^2\,K]$ Capacità termica areica interna: 63.15 $[kJ/m^2 K]$ Capacità termica areica esterna: 104.28 $[kJ/m^2 K]$ Fattore di attenuazione **fa** : 0.04 17.41 Sfasamento Δt_f : [h] Trasmittanza termica periodica Yie: $[W/m^2 K]$ 0.06

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	311	Intonaco di calce e gesso	3.00	0.699	0	1400	0.04	0.84	10	42.00
2	533	Muratura in pietra naturale	65.00	1.500	0	2000	0.43	0.84	50	1300.0 0
3	311	Intonaco di calce e gesso	3.00	0.699	0	1400	0.04	0.84	10	42.00

	CONDIZIONI AL CONTORNO DELLA STRUTTURA										
	Tinterna [°C] U. R. interna [%] Testerna [°C] U. R. esterna [%]										
Invernale	20.0 65.0 10.7 85.9										

Verifica Termo-Igrometrica

POSITIVA

Mese	Temp.int.	Um.Rel.int	Temp.est.	Um.Rel.est	Pi	Pe	Temp.min.	FRSI	Gc	Ma
	[°C]	[%]	[°C]	[%]	[Pa]	[Pa]	[°C]		[kg/m ²]	[kg/m ²]
Gennaio	20.00	65	10.70	86	1519	900	8.71	0	0	0
Febbraio	20.00	65	11.20	75	1519	997	10.23	0	0	0
Marzo	20.00	65	12.90	71	1519	1056	11.09	0	0	0
Aprile	20.00	65	15.50	67	1519	1179	12.76	0	0	0
Maggio	20.00	65	19.10	70	1519	1547	16.98	0	0	0
Giugno	20.00	65	23.50	65	1519	1881	20.10	0	0	0
Luglio	20.00	65	26.50	58	1519	2007	21.15	0	0	0
Agosto	20.00	65	26.50	67	1519	2318	23.52	0	0	0
Settembre	20.00	65	24.10	66	1519	1980	20.93	0	0	0
Ottobre	20.00	65	19.90	68	1519	1579	17.30	0	0	0
Novembre	20.00	65	15.90	71	1519	1282	14.05	0	0	0
Dicembre	20.00	65	12.30	72	1519	1029	10.71	0	0	0

VERIFICHE NORMATIVE SULLA CONDENSA

- La parete non è soggetta a fenomeni di condensa interstiziale.
- La parete non è soggetta a fenomeni di condensa superficiale.

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA	DIAGRAMMA DI GLASER					
(2) Impulsion consideres Tronspare Conjugat. Franchis core le les some quante, montante en destinances des del disputemen como del les el generon como del les el generons como del les el genero	The model includes brought relation for the same quasar, numbers of states for bridgeness model of the a primary count. The model includes the primary country of the primary country of the approximate of the					

Legenda:

Cod. Struttura: Terr - Descrizione Struttura: Terrazza

Tipo Struttura : Soffitto

49.0 Spessore totale: [cm] Classificazione della parete: Soffitto Opaco Colore della parete: Medio Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 0.289 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] Trasmittanza U adottata : 0.289 $[W/m^2\,K]$ 35.90 Capacità termica areica interna: $[kJ/m^2 K]$ Capacità termica areica esterna: 141.47 $[kJ/m^2 K]$ Fattore di attenuazione **fa** : 0.15 16.15 Sfasamento Δt_f : [h] Trasmittanza termica periodica Yie: $[W/m^2 K]$ 0.04

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	311	Intonaco di calce e gesso	2.00	0.699	0	1400	0.03	0.84	10	28.00
2	7	Calcestruzzo perlite-vermiculite	10.00	0.150	0	400	0.67	0.88	40	40.00
3	136	Argilla espansa sfusa	25.00	0.100	0	330	2.50	0.92	15	82.50
4	5	Calcestruzzo ordinario	10.00	1.280	0	2200	0.08	0.88	70	220.00
5	698	Piastrelle in cemento e marmo	2.00	1.500	0	2200	0.01	0.84	100	44.00

CONDIZIONI AL CONTORNO DELLA STRUTTURA									
	Tinterna [°C] U. R. interna [%] Testerna [°C] U. R. esterna [%]								
Invernale	20.0	65.0	10.7	85.9					

Verifica Termo-Igrometrica

POSITIVA

Mese	Temp.int.	Um.Rel.int	Temp.est.	Um.Rel.est	Pi	Pe	Temp.min.	FRSI	Gc	Ma
	[°C]	[%]	[°C]	[%]	[Pa]	[Pa]	[°C]		[kg/m ²]	[kg/m ²]
Gennaio	20.00	65	10.70	86	1519	900	8.71	0	0	0
Febbraio	20.00	65	11.20	75	1519	997	10.23	0	0	0
Marzo	20.00	65	12.90	71	1519	1056	11.09	0	0	0
Aprile	20.00	65	15.50	67	1519	1179	12.76	0	0	0
Maggio	20.00	65	19.10	70	1519	1547	16.98	0	0	0
Giugno	20.00	65	23.50	65	1519	1881	20.10	0	0	0
Luglio	20.00	65	26.50	58	1519	2007	21.15	0	0	0
Agosto	20.00	65	26.50	67	1519	2318	23.52	0	0	0
Settembre	20.00	65	24.10	66	1519	1980	20.93	0	0	0
Ottobre	20.00	65	19.90	68	1519	1579	17.30	0	0	0
Novembre	20.00	65	15.90	71	1519	1282	14.05	0	0	0
Dicembre	20.00	65	12.30	72	1519	1029	10.71	0	0	0

VERIFICHE NORMATIVE SULLA CONDENSA

- La parete non è soggetta a fenomeni di condensa interstiziale.
- La parete non è soggetta a fenomeni di condensa superficiale.

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m ³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA	DIAGRAMMA DI GLASER
☐ Impacts readons through a ships in Equation (or it is an inter-parties, reaching a relation to it is dispersion to the following readons of the expersion counts.)	and the standard longer origins of position of the same equation, contact orders in long and independent original and the experiment of the experiment or th

Legenda:

Linea Rossa
Linea Blu
Linea VerdeTemperatura
Pressione di saturazione
Pressione di vapore[°C]
[kPa]

Cod. Struttura: Panr - Descrizione Struttura: Pav. Piano1

Tipo Struttura: Pavimento

49.0 Spessore totale: [cm] Classificazione della parete : Pavimento Opaco Colore della parete: Medio Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: $[W/m^2 K]$ 0.648 Incremento % di sicurezza: 0 [%] $[\,W/m^2\,K\,]$ Trasmittanza U adottata: 0.648

Descrizione tipo divisorio

Divisorio separazione tra alloggi

Capacità termica areica interna :60.89 $[kJ/m^2 K]$ Capacità termica areica esterna :30.61 $[kJ/m^2 K]$ Fattore di attenuazione \mathbf{fa} :0.04-Sfasamento $\Delta \mathbf{f_f}$:16.80[h]Trasmittanza termica periodica \mathbf{Yie} : $\mathbf{0.03}$ $[W/m^2 K]$

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	698	Piastrelle in cemento e marmo	2.00	1.500	0	2200	0.01	0.84	100	44.00
2	5	Calcestruzzo ordinario	10.00	1.280	0	2200	0.08	0.88	70	220.00
3	530	Sabbia secca (Umidità < 1%)	25.00	0.600	0	1700	0.42	0.84	15	425.00
4	7	Calcestruzzo perlite-vermiculite	10.00	0.150	0	400	0.67	0.88	40	40.00
5	311	Intonaco di calce e gesso	2.00	0.699	0	1400	0.03	0.84	10	28.00

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA	DIAGRAMMA DI GLASER			
(2) Imposable conductor from principles Equalitic circ for an asian qualities, decrease a chinate, inclinar and a subgramme content of the ext previous content.		To be provided translation brought unlarge of provided star to be seen upcase, translation at the subspaces counted the experience counted.		

Legenda:

Cod. Struttura: PavInt - Descrizione Struttura: Pavim. Interpiano

Tipo Struttura : Pavimento

49.0 Spessore totale: [cm] Pavimento Classificazione della parete: Opaco Colore della parete: Medio Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: $[W/m^2 K]$ 0.648 Incremento % di sicurezza: 0 [%] Trasmittanza U adottata : 0.648 $[W/m^2 K]$

Descrizione tipo divisorio Divisorio separazione tra locali

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	698	Piastrelle in cemento e marmo	2.00	1.500	0	2200	0.01	0.84	100	44.00
2	5	Calcestruzzo ordinario	10.00	1.280	0	2200	0.08	0.88	70	220.00
3	530	Sabbia secca (Umidità < 1%)	25.00	0.600	0	1700	0.42	0.84	15	425.00
4	7	Calcestruzzo perlite-vermiculite	10.00	0.150	0	400	0.67	0.88	40	40.00
5	311	Intonaco di calce e gesso	2.00	0.699	0	1400	0.03	0.84	10	28.00

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA	DIAGRAMMA DI GLASER			
[2] Impación mutudano homogras ninigas. E preside en el Si de seu queste, momente a delinen, tendres el el subgenero mensi delle el presero consti		Inspecials must be brought a disput for the set and quanter, montains a deletion includes the Ladingerous counts of the a personal control.		

Legenda:

Cod. Struttura: Solint - Descrizione Struttura: Solaio interpiano

Tipo Struttura : Soffitto

49.0 Spessore totale: [cm] Classificazione della parete: Soffitto Opaco Colore della parete: Chiaro Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 0.713 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] 0.713 Trasmittanza U adottata: $[W/m^2 K]$

Descrizione tipo divisorio Divisorio separazione tra locali

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	311	Intonaco di calce e gesso	2.00	0.699	0	1400	0.03	0.84	10	28.00
2	7	Calcestruzzo perlite-vermiculite	10.00	0.150	0	400	0.67	0.88	40	40.00
3	530	Sabbia secca (Umidità < 1%)	25.00	0.600	0	1700	0.42	0.84	15	425.00
4	5	Calcestruzzo ordinario	10.00	1.280	0	2200	0.08	0.88	70	220.00
5	698	Piastrelle in cemento e marmo	2.00	1.500	0	2200	0.01	0.84	100	44.00

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA	DIAGRAMMA DI GLASER			
[2] Impación mutudano homogras ninigas. E preside en el Si de seu queste, momente a delinen, tendres el el subgenero mensi delle el presero consti		Inspecials must be brought a disput for the set and quanter, montains a deletion includes the Ladingerous counts of the a personal control.		

Legenda:

Cod. Struttura: Solns - Descrizione Struttura: Solaio Piano 2

Tipo Struttura: Soffitto

47.0 Spessore totale: [cm] Classificazione della parete : Soffitto Opaco Colore della parete: Chiaro Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 0.288 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] Trasmittanza U adottata : 0.288 $[W/m^2 K]$

Descrizione tipo divisorio

Divisorio separazione tra locali (verso uno non riscaldato)

Capacità termica areica interna :37.92 $[kJ/m^2 K]$ Capacità termica areica esterna :90.92 $[kJ/m^2 K]$ Fattore di attenuazione \mathbf{fa} :0.12-Sfasamento $\Delta \mathbf{f_f}$:16.37[h]Trasmittanza termica periodica \mathbf{Yie} : $\mathbf{0.03}$ $[W/m^2 K]$

N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
1	311	Intonaco di calce e gesso	2.00	0.699	0	1400	0.03	0.84	10	28.00
2	7	Calcestruzzo perlite-vermiculite	10.00	0.150	0	400	0.67	0.88	40	40.00
3	136	Argilla espansa sfusa	25.00	0.100	0	330	2.50	0.92	15	82.50
4	5	Calcestruzzo ordinario	10.00	1.280	0	2200	0.08	0.88	70	220.00

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	[kg/m ²]

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA	DIAGRAMMA DI GLASER				
(i) Impediate conductor foreigne i (public car is the seets quade, recovery a obtainer to be independent contact of the of purcus cross).	results conduces throughou adaptin. If product are 1 for an express, resonance adults are the department and 4 for a generous control.				
i					

Legenda:

Cod. Struttura: Po - Descrizione Struttura: Porta interna

Tipo Struttura: Parete

6.0 Spessore totale: [cm] Classificazione della parete: Parete Opaco Colore della parete: Medio Velocità del vento: 2.6 [m/s]Trasmittanza U calcolata: 1.316 $[W/m^2 K]$ Incremento % di sicurezza: 0 [%] $Trasmittanza\;U\;adottata:$ 1.316

Descrizione tipo divisorio Divisorio separazione tra locali

Ī	N°	Cod.Mat.	Descrizione Strato	Spessore	Lambda	Cond.	Densità	RT	CTM	MU	MA
ı	1	332	Abete-flusso perpendicolare	6.00	0.120	0	450	0.50	2.70	60	27.00

 $[W/m^2 K]$

Legenda:

N°	Strato del materiale	-	Densità	Densità del materiale	[kg/m ³]
Cod.Mat.	Codice del materiale	-	RT	Resistenza termica	$[m^2 K/W]$
Spessore	Spessore dello strato	[cm]	CTM	Capacità termica massica	[KJ/kg K]
Lambda	Conduttività termica	[W/m K]	MU	Permeabilità al vapore	-
Cond.	Conduttanza termica	[m K/W]	MA	Massa areica dello strato	$[kg/m^2]$

GRAFICI STRATIGRAFIA E VERIFICA TERMO IGROMETRICA

STRATIGRAFIA	DIAGRAMMA DI GLASER
To provide considere longue cologia. Eposité ce i fu se ane quan, montes o séries. Serbare de l'adqueres couré d'és e é previe consi.	Segundaria studients biomagnic aliquiani (paralale Ari 1 dia ana spessio, studiente a deletaria, indeben de la dispession served delle et a pressessionent.

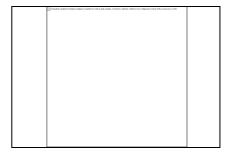
Legenda:

Linea Rossa [°C] Temperatura Linea Blu Pressione di saturazione [kPa] Pressione di vapore Linea Verde [kPa]

ELENCO DELLE FINESTRE E PORTE PRESENTI NEL PROGETTO

Descrizione	Tipo	Tras.Fin	Tras.Fin+SottoFin	Increm. %	Trasm.Fin+SottoFin+Incr.
Finestra 2 ante	Finestra	2.580	2.300	0	2.300
Lucernaio	Lucernari	1.670	3.240	0	3.240
	0				
Finestra 2 ante 1	Finestra	2.580	2.340	0	2.340
Finestra 2 ante 2	Finestra	2.580	2.290	0	2.290
Presa luce	Finestra	2.580	1.290	0	1.290

Legenda:


Trasm. Fin.Trasmittanza della finestra $[W/m^2 K]$ Trasm. Fin+SottoFinTrasmittanza della finestra più la trasmittanza del sottofinestra $[W/m^2 K]$ Increm. %Incremento percentuale di sicurezza della trasmittanza[%]Trasm. Fin+SottoFin + Incr.Trasmittanza della finestra più la trasmittanza del sottofinestra comprensiva dell'incremento di sicurezza $[W/m^2 K]$

Descrizione	Tipo	Tras.Porta	Increm. %	Trasm.Porta+Incr.
Porta interna	Porta	2.500	0	2.500

Legenda:

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL'INVOLUCRO EDILIZIO

Codice:	FIN
Descrizione:	Finestra 2 ante
Categoria:	Finestra

Trasmittanza della finestra	2.58	$[W/m^2K]$
Trasmittanza della Finestra + Trasmittanza Sottofinestra	2.30	$[W/m^2K]$
Incremento di sicurezza	0	[%]
Trasmittanza della Finestra + Trasmittanza Sottofinestra + Incremento	2.30	$[W/m^2K]$

Dati caratteristici

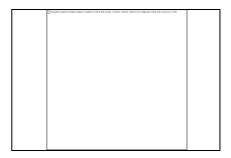
Dati geometrici - Dimensioni		
Larghezza:	1.13	[m]
Altezza:	2.17	[m]
Numero ante:	2.00	-
Spessore ante:	0.05	[m]

Tipologia vetro - Dati prospetto C.1 UNI TS 11300-1		
Vetro:	Vetro normale	-
Emissività della superficie:	0.89	-
Spessore intercapedine:	4-6-4	[mm]
Tipo Gas:	Aria	-
Tipo trasmittanza Ug:	2.55	$[W/m^2K]$

Sottofinestra		
Tipo:	Par. est. 70	-
Altezza:	0.70	[m]
Trasmittanza:	1.45	[W/m ² K]

Caratteristiche termiche della parte finestrata		
Trasmittanza lineica del separatore dei vetri (vetro doppio) Ui:	0.03	$[W/m^2K]$
Trasmittanza telaio Uf:	2.10	[W/m ² K]

Valori calcolati parte finestrata		
Area del vetro Ag:	1.93	$[m^2]$
Area del telaio Af:	0.53	$[m^2]$
Perimetro del vetro Lg:	10.14	[m]
Trasmittanza finestra + infisso Uw:	2.58	$[W/m^2K]$
Percentuale vetrata (sottofinestra):	79.00	[%]


Valori calcolati parte opaca		
Superficie setti opachi:	0.79	$[m^2]$
Superficie totale:	3.24	$[m^2]$

Dati ombreggiamento

Aggetti verticali		
Profondità d:	0.00	[m]
Distanza c:	0.00	[m]
Angolo beta:	0.00	[°]

Aggetti orizzontali		
Profondità b:	0.00	[m]
Distanza a:	0.00	[m]
Angolo alfa:	0.00	[°]

Codice:	Luc
Descrizione:	Lucernaio
Categoria:	Lucernario

Trasmittanza della finestra	1.67	$[W/m^2K]$
Trasmittanza della Finestra + Trasmittanza Sottofinestra	3.24	$[W/m^2K]$
Incremento di sicurezza	0	[%]
Trasmittanza della Finestra + Trasmittanza Sottofinestra + Incremento	3.24	$[W/m^2K]$

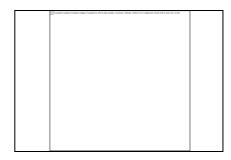
Dati geometrici - Dimensioni		
Larghezza:	4.00	[m]
Altezza:	4.00	[m]
Numero ante:	2.00	-
Spessore ante:	0.05	[m]

Tipologia vetro - Dati prospetto C.1 UNI TS 11300-1		
Vetro:	Vetro normale	-
Emissività della superficie:	0.89	-
Spessore intercapedine:	4-6-4	[mm]
Tipo Gas:	Aria	-
Tipo trasmittanza Ug:	1.60	$[W/m^2K]$

Sottofinestra		
Tipo:	Nessuno	-
Altezza:	0.00	[m]
Trasmittanza:	0.00	$[W/m^2K]$

Caratteristiche termiche della parte finestrata		
Trasmittanza lineica del separatore dei vetri (vetro doppio) Ui:	0.03	$[W/m^2K]$
Trasmittanza telaio Uf:	1.90	$[W/m^2K]$

Valori calcolati parte finestrata		
Area del vetro Ag:	14.82	$[m^2]$
Area del telaio Af:	1.18	$[m^2]$
Perimetro del vetro Lg:	23.20	[m]
Trasmittanza finestra + infisso Uw:	1.67	[W/m ² K]
Percentuale vetrata (sottofinestra):	93.00	[%]


Valori calcolati parte opaca		
Superficie setti opachi:	0.00	$[m^2]$
Superficie totale:	16.00	$[m^2]$

Dati ombreggiamento

Profondità d:	0.00	[m]
Distanza c:	0.00	[m]
Angolo beta:	0.00	[°]

Aggetti orizzontali		
Profondità b:	0.00	[m]
Distanza a:	0.00	[m]
Angolo alfa:	0.00	[°]

Codice:	FIN1
Descrizione:	Finestra 2 ante 1
Categoria:	Finestra

Trasmittanza della finestra	2.58	$[W/m^2K]$
Trasmittanza della Finestra + Trasmittanza Sottofinestra	2.34	$[W/m^2K]$
Incremento di sicurezza	0	[%]
Trasmittanza della Finestra + Trasmittanza Sottofinestra + Incremento	2.34	$[W/m^2K]$

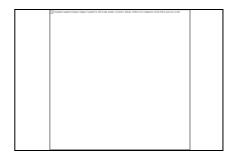
Dati geometrici - Dimensioni		
Larghezza:	0.90	[m]
Altezza:	2.50	[m]
Numero ante:	2.00	-
Spessore ante:	0.05	[m]

Tipologia vetro - Dati prospetto C.1 UNI TS 11300-1		
Vetro:	Vetro normale	-
Emissività della superficie:	0.89	-
Spessore intercapedine:	4-6-4	[mm]
Tipo Gas:	Aria	-
Tipo trasmittanza Ug:	2.55	$[W/m^2K]$

Sottofinestra		
Tipo:	Par. est. 70	-
Altezza:	0.70	[m]
Trasmittanza:	1.45	$[W/m^2K]$

Caratteristiche termiche della parte finestrata		
Trasmittanza lineica del separatore dei vetri (vetro doppio) Ui:	0.03	$[W/m^2K]$
Trasmittanza telaio Uf:	2.10	[W/m ² K]

Valori calcolati parte finestrata		
Area del vetro Ag:	1.68	$[m^2]$
Area del telaio Af:	0.57	$[m^2]$
Perimetro del vetro Lg:	11.00	[m]
Trasmittanza finestra + infisso Uw:	2.58	$[W/m^2K]$
Percentuale vetrata (sottofinestra):	75.00	[%]


Valori calcolati parte opaca		
Superficie setti opachi:	0.63	$[m^2]$
Superficie totale:	2.88	$[m^2]$

Dati ombreggiamento

Profondità d:	1.50	[m]
Distanza c:	20.00	[m]
Angolo beta:	0.00	[°]

Aggetti orizzontali		
Profondità b:	0.00	[m]
Distanza a:	0.00	[m]
Angolo alfa:	0.00	[°]

Codice:	FIN2
Descrizione:	Finestra 2 ante 2
Categoria:	Finestra

Trasmittanza della finestra	2.58	$[W/m^2K]$
Trasmittanza della Finestra + Trasmittanza Sottofinestra	2.29	$[W/m^2K]$
Incremento di sicurezza	0	[%]
Trasmittanza della Finestra + Trasmittanza Sottofinestra + Incremento	2.29	$[W/m^2K]$

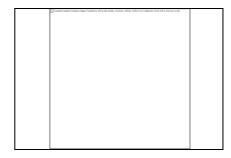
Dati geometrici - Dimensioni		
Larghezza:	1.15	[m]
Altezza:	2.04	[m]
Numero ante:	2.00	-
Spessore ante:	0.05	[m]

Tipologia vetro - Dati prospetto C.1 UNI TS 11300-1		
Vetro:	Vetro normale	-
Emissività della superficie:	0.89	-
Spessore intercapedine:	4-6-4	[mm]
Tipo Gas:	Aria	-
Tipo trasmittanza Ug:	2.55	[W/m ² K]

Sottofinestra		
Tipo:	Par. est. 70	-
Altezza:	0.70	[m]
Trasmittanza:	1.45	[W/m ² K]

Caratteristiche termiche della parte finestrata		
Trasmittanza lineica del separatore dei vetri (vetro doppio) Ui:	0.03	$[W/m^2K]$
Trasmittanza telaio Uf:	2.10	[W/m ² K]

Valori calcolati parte finestrata		
Area del vetro Ag:	1.84	[m ²]
Area del telaio Af:	0.50	[m ²]
Perimetro del vetro Lg:	9.66	[m]
Trasmittanza finestra + infisso Uw:	2.58	[W/m ² K]
Percentuale vetrata (sottofinestra):	79.00	[%]


Valori calcolati parte opaca		
Superficie setti opachi:	0.80	$[m^2]$
Superficie totale:	3.15	$[m^2]$

Dati ombreggiamento

Profondità d:	1.80	[m]
Distanza c:	20.00	[m]
Angolo beta:	0.00	[°]

Aggetti orizzontali		
Profondità b:	0.00	[m]
Distanza a:	0.00	[m]
Angolo alfa:	0.00	[°]

Codice:	FIN3
Descrizione:	Presa luce
Categoria:	Finestra

Trasmittanza della finestra	2.58	$[W/m^2K]$
Trasmittanza della Finestra + Trasmittanza Sottofinestra	1.29	$[W/m^2K]$
Incremento di sicurezza	0	[%]
Trasmittanza della Finestra + Trasmittanza Sottofinestra + Incremento	1.29	$[W/m^2K]$

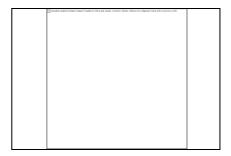
Dati geometrici - Dimensioni		
Larghezza:	0.40	[m]
Altezza:	0.70	[m]
Numero ante:	1.00	-
Spessore ante:	0.05	[m]

Tipologia vetro - Dati prospetto C.1 UNI TS 11300-1		
Vetro:	Vetro normale	-
Emissività della superficie:	0.89	-
Spessore intercapedine:	4-6-4	[mm]
Tipo Gas:	Aria	-
Tipo trasmittanza Ug:	2.55	$[W/m^2K]$

Sottofinestra		
Tipo:	Nessuno	-
Altezza:	0.70	[m]
Trasmittanza:	0.00	$[W/m^2K]$

Caratteristiche termiche della parte finestrata		
Trasmittanza lineica del separatore dei vetri (vetro doppio) Ui:	0.03	$[W/m^2K]$
Trasmittanza telaio Uf:	2.10	$[W/m^2K]$

Valori calcolati parte finestrata		
Area del vetro Ag:	0.18	$[m^2]$
Area del telaio Af:	0.10	$[m^2]$
Perimetro del vetro Lg:	1.80	[m]
Trasmittanza finestra + infisso Uw:	2.58	[W/m ² K]
Percentuale vetrata (sottofinestra):	64.00	[%]


Valori calcolati parte opaca		
Superficie setti opachi:	0.28	$[m^2]$
Superficie totale:	0.56	$[m^2]$

Dati ombreggiamento

Profondità d:	1.80	[m]
Distanza c:	20.00	[m]
Angolo beta:	0.00	[°]

Aggetti orizzontali		
Profondità b:	0.00	[m]
Distanza a:	0.00	[m]
Angolo alfa:	0.00	[°]

Codice:	Porta
Descrizione:	Porta interna
Categoria:	Porta

Trasmittanza della Porta	2.50	$[W/m^2K]$
Incremento di sicurezza	2.50	[%]
Trasmittanza della Porta + Incremento	2.50	$[W/m^2K]$

Dati geometrici - Dimensioni		
Larghezza:	1.20	[m]
Altezza:	2.20	[m]
Numero ante:	0.00	-
Spessore ante:	0.00	[m]

Materiale della porta		
Tipo:	Nessuno	-
Trasmittanza:	0.00	$[W/m^2K]$

Valori calcolati parte opaca		
Superficie setti opachi:	2.64	$[m^2]$
Superficie totale:	2.64	$[m^2]$

Dati ombreggiamento

Profondità d:	0.00	[m]
Distanza c:	0.00	[m]
Angolo beta:	0.00	[°]

Aggetti orizzontali		
Profondità b:	0.00	[m]
Distanza a:	0.00	[m]
Angolo alfa:	0.00	[°]